MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2018

Calculator-assumed

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2018

Question 8

CALCULATOR-ASSUMED MARKING KEY

(5 marks)

Solution		
4-3x = 5 + x+2		
Critical values $x = -2$, $x = \frac{4}{3}$		
$x \le -2 \qquad \Longrightarrow \qquad 4 - 3x = 5 - x - 2$		
\Rightarrow $2x = 1$		
$x = \frac{1}{2}$ Contradiction		
$-2 < x < \frac{4}{3} \implies \qquad 4 - 3x = 5 + x + 2$		
\Rightarrow $4x = -3$		
$\Rightarrow \qquad x = -\frac{3}{4}$		
$x \ge \frac{4}{3} \qquad \Rightarrow \qquad -4 + 3x = 5 + x + 2$		
2x = 11		
$x = \frac{11}{2}$		
Solution: $x = -\frac{3}{4}, x = \frac{11}{2}$		
Mathematical behaviours	Marks	
 states the correct critical values 	1	
writes correct equations for each sub-interval		
• determines correct conclusion for $x \le -2$ 1		
• correct solution for $-2 < x < \frac{4}{3}$	1	
• provides the correct solution for $x \ge \frac{4}{3}$	1	

Question 9 (a)

lf

then

$\frac{1}{w} = \frac{1}{1-i} + \frac{2}{i} = \frac{2-i}{(1-i)i}$	
$w = \frac{i(1-i)}{2-i} = \frac{(1+i)}{2-i} \times \frac{2+i}{2+i} = \frac{1}{5}(1+3i)$	

Mathematical behaviours	Marks
combines the two fractions	1
 inverts the expression and multiplies by the complex conjugate 	1
deduces the correct real and imaginary parts	1

Solution

Question 9(b)

Solution	
From calculator $i^i \approx 0.20787958$	
Mathematical behaviours Marks	
 states the value required quoting the answer to eight places 	1

Question 9(c)

Solution	
Since $\exp(i\beta) = \cos\beta + i\sin\beta = i$ if $\cos\beta = 0$ and $\sin\beta = 1$.	
The smallest possible solution is clearly $\beta = \pi / 2$.	
Mathematical behaviours	Marks
• solves for the required β giving the answer in radians	1

Question 9(d)

From (b) we deduce that $i^{i} = [\exp(i\pi/2)]^{i} = \exp(i^{2}\pi/2) = \exp(-\pi/2)$.	
Mathematical behaviours	Marks
 combines the results of parts (a) and (b) to infer the exact value 	1

Solution

(1 mark)

(1 mark)

(1 mark)

(3 marks)

CALCULATOR-ASSUMED MARKING KEY

Question 10(a)

(2 marks)

Solution		
Given that $z = 2i$ is a solution of $z^4 - 2z^3 + mz^2 + nz + 104 = 0$ then $16 + 16i - 4m + 2in + 104 = 0$		
Real parts give that $120 - 4m = 0 \implies m = 30$		
and imaginary parts imply that $16 + 2n = 0 \implies n = -8$.		
Mathematical behaviours	Marks	
• substitutes the value $z = 2i$ into the equation	1	
• deduces the required values of <i>m</i> and <i>n</i>	1	

Question 10(b)

Solution

Since z = 2i is a solution of the polynomial equation then so is z = -2iHence the quartic has a factor $(z - 2i)(z + 2i) = (z^2 + 4)$ By long division

$$z^{4} - 2z^{3} + 30z^{2} - 8z + 104 = (z^{2} + 4)(z^{2} - 2z + 26)$$

By the quadratic formula the equation $z^2 - 2z + 26 = 0$ has solutions $z = 1 \pm 5i$ Hence the required three other solutions are -2i and $1 \pm 5i$

solve $(z^4 - 2z^3 + 30z^2 - 8z + 104 = 0)$ $\{z=-2 \cdot i, z=2 \cdot i, z=1-5 \cdot i, z=1+b$ solve $(z^4 - 2z^3 + 30z^2 - 8z + 104 = 0)$ $2 \cdot i, z = 2 \cdot i, z = 1 - 5 \cdot i, z = 1 + 5 \cdot i$

	Mathematical behaviours	Marks
٠	correctly notes that the conjugate $z = -2i$ is also a solution	1
•	notes that the quartic has a factor $(z^2 + 4)$	1
•	factorises the quartic	1
•	deduces the required extra solutions of the quartic	l

(4 marks)

CACULATOR-ASSUMED MARKING KEY

Question 11(a)

(1 mark)

Solution	
$a = (2i + 3j + 2k) \times (3i + 5j + k)$ = (3 × 1 - 2 × 5)i + (2 × 3 - 1 × 2)j + (2 × 5 - 3 × 3)k = -7i + 4j + k [2, 3, 2]*a [3, 5, 1]*b [3, 5, 1]*b [3 5 1] crossP(a, b) [-7 4 1]	
Mathematical behaviours Marks	
evaluates the cross product correctly	

Question 11(b)

(2 marks)

Solution	
$2i + 3j + 2k$ and $3i + 5j + k$ are normal to the planes \mathcal{P}_1 and \mathcal{P}_2 and <i>a</i> is perpendicular to both of these normals. (*) So <i>a</i> is parallel to vectors in each of the planes \mathcal{P}_1 and \mathcal{P}_2 So <i>a</i> is parallel to the line of intersection of these planes, i.e. L. (**)	
Mathematical behaviours	Marks
obtains result (*)	1
 completes the argument correctly (**) 	1

Question 11(c)

Solution		
Since a is parallel to L, a vector equation for L has the form $r = xi + yj + zk = r_0 + ta$		
As (0,1,0) lies in L, we may assume that $r_0 = j$		
So $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \mathbf{j} + t(-7\mathbf{i} + 4\mathbf{j} + \mathbf{k})$ is a vector equation for L.		
Mathematical behaviours Marks		
 evaluates r₀ 	1	
 obtains a correct vector form of equation 	1	

CALCULATOR-ASSUMED MARKING KEY

Question 11(d)(i)

(3 marks)

	Solution
2x + 3y + 2z = 3 The equations $3x + 5y + z = 5$ $7x + 11y + az = b$	reduce to $x + 7z = 0$ y - 4z = 1 (*) (a - 5)z = b - 11

The planes \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 have infinitely points in common if the third equation reduces to $0 \times z = 0$, i.e. if a = 5 and b = 11

Mathematical behaviours	Marks
• attempts simultaneous reduction of the equations for \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3	1
 derives equation (*) 	1
deduces the correct solutions	1

Question 11(d)(ii)

(1 mark)

Solution	
The planes \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 have no point in common if equations (*) in d(i) are inconsistent, i.e. the third equation reduces to $0 \times z \neq 0$, i.e. if $a = 5$ and $b \neq 11$.	
Mathematical behaviours	Marks
deduces the correct solution	1

Question 12 (a)

Solution	
$f \circ g(x) = 2\cos\sqrt{1-x}$	
$g \circ f(x) = \sqrt{1 - 2\cos x}$	
Mathematical behaviours	Marks
• derives correct expression for $f \circ g(x)$	1
• derives correct expression for $g \circ f(x)$	1

Question 12 (b)

Solution	
$Domainf\circ g=\!\{x\!:\!1\!-\!x\!\ge\!0,x\in\mathbb{R}\}$	
$= \left\{ x : x \le 1, \ x \in \mathbb{R} \right\}$	
$Rangef\circ g=\bigl\{y:-2\leq y\leq 2,\;y\in\mathbb{R}\bigr\}$	
Mathematical behaviours	Marks
states correct domain	1
states correct range	1

Question 12 (c)

(3 marks)

Solution	
Domain $g \circ f = \left\{ x : \cos x \le \frac{1}{2}, x \in \mathbb{R} \right\}$	
$=\left\{x: 2k\pi + \frac{\pi}{3} \le x \le 2k\pi + \frac{5\pi}{3}, k \text{ an integer, } x \in \mathbb{R}\right\}$	
Range $g \circ f = \left\{ y : 0 \le y \le \sqrt{3}, y \in \mathbb{R} \right\}$	
Mathematical behaviours	Marks
 states correct domain including mention of the π/3 states correct range 	1+1 1

CACULATOR-ASSUMED MARKING KEY

(2 marks)

Question 13(a)

(3 marks)

Question 13(b)

Solution	
Required volume of rotation is given by	
$V = \pi \int_{0}^{\pi/4} (\sqrt{2}\cos x)^{2} dx - \pi \int_{0}^{\pi/4} \left(\frac{4}{\pi}x\right)^{2} dx = \pi \int_{0}^{\pi/4} (1 + \cos 2x) dx - \frac{16}{\pi} \left[\frac{x^{3}}{3}\right]_{0}^{\pi/4}$ $= \pi \left[x + \frac{1}{2}\sin 2x\right]_{0}^{\pi/4} - \frac{16}{\pi} \times \frac{\pi^{3}}{192} = \pi \left[\frac{\pi}{4} + \frac{1}{2}\right] - \frac{\pi^{2}}{12} = \frac{1}{6}\pi^{2} + \frac{1}{2}\pi$	
Mathematical behaviours	Marks
• writes down the appropriate expression for the volume for the two parts	1
deduces the correct volume	1

Question 14 (a)

(2 marks)

Solution	
Using $a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	
$=\frac{d}{dx}\left(\frac{1}{2}(25-5x^2)\right)$	
=-5x	
Since $a = -(\sqrt{5})^2 x$, then motion is SHM with period = $\frac{2\pi}{\sqrt{5}}$.	
Mathematical behaviours	Marks
differentiates to obtain experession for acceleration	1
shows motion is simple harmonic with correct period	1

Question 14 (b)

(2 marks)

(2 marks)

Solution	
$v^2 = 5(5 - x^2)$	
$x = \sqrt{5}\sin\left(\sqrt{5}t\right)$	
Mathematical behaviours	Marks
states correct amplitude	1
 states correct displacement equation 	1

Question 14 (c)

Solution max speed $= 5 \text{ cms}^{-1}$ min speed = 0 cms^{-1} Mathematical behaviours Marks 1 states correct maximum speed • 1 states correct minimum speed •

CACULATOR-ASSUMED MARKING KEY

Question 14 (d)

CALCULATOR-ASSUMED MARKING KEY

(3 marks)

Solution		
$v(t) = 5\cos\left(\sqrt{5}t\right)$	\mathfrak{G} Edit Action Interactive $\mathfrak{G}_{5,\frac{1}{2}}$ $\mathfrak{H} \succ$ $\mathfrak{G}_{5,\frac{1}{2}}$ $\mathfrak{G}_{5,\frac{1}{2}}$ $\mathfrak{H} \succ$ $\mathfrak{G}_{5,\frac{1}{2}}$ $\mathfrak{G}_{5,\frac{1}{2}}$ $\mathfrak{G}_{5,\frac{1}{2}}$ \mathfrak{Simp} $\mathfrak{G}_{5,\frac{1}{2}}$	× ×
distance $=\int_{3}^{4} v(t) dt$	$\int_{3}^{4} 5\cos(\sqrt{5}t) dt$	
$= \int_{3}^{4} \left 5\cos\left(\sqrt{5}t\right) \right dt$	2.5165475	3
= 2.52 cm to 2 dp		
Mathematical behavio	ours	Marks
expresses velocity as a function of time		1
 integrates using correct upper and lower 	values	1
 calculates distance travelled 		1

Question 14 (e)

Solution		
Since $x(8) < 0$ and $v(8) > 0$, the particle is travelling towards the origin when $t = 8$.	$ \begin{array}{ c c c c c } \hline & \text{Edit Action Interactive} \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	
Mathematical behaviours		Marks
• calculates $x(8)$ and $v(8)$		1
draws correct conclusion		1

Question 15

Solution	
If we write $\frac{x+3}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1} = \frac{(A+B)x-A}{x(x-1)}$ Equating the coefficients gives $A = -3$ and $B = 4$	
Hence	
$\int_{2}^{4} \frac{x+3}{x(x-1)} dx = -3 \int_{2}^{4} \frac{dx}{x} + 4 \int_{2}^{4} \frac{dx}{x-1} = \left[-3\ln x + 4\ln(x-1)\right]_{2}^{4} = 4\ln 3 - 3\ln 4 + 3$	3 ln 2
$=\ln\left(\frac{3^4\times2^3}{4^3}\right)=\ln$	$n\left(\frac{81}{8}\right)$
Mathematical behaviours	Marks
 writes down the appropriate form of the partial fractions 	1
 compares coefficients to deduce the constants A and B 	1
integrates correctly	1
deduces the required result	1

Question 16 (a)

Solution	
The parabola joins the orgin with the point (9,6)	
Line cuts parabola within the domain if $9a > 6 \implies a > 2/3$.	
Mathematical behaviours	Marks
 determines correctly the required inequality 	1

Question 16 (b)

Solution

There is no need to compute the point of intersection. The two areas are equal if the area under the parabola over $0 \le x \le 9$ matches the area under the line.

Now

$$\int_{0}^{9} 2\sqrt{x} dx = \frac{4}{3} \left[x^{3/2} \right]_{0}^{9} = \frac{4}{3} \times 27 = 36$$
$$\int_{0}^{9} ax \, dx = \frac{1}{2} a \left[x^{2} \right]_{0}^{9} = \frac{81}{2} a$$

and

Thus	a = 72/81 = 8/9	

	Mathematical behaviours	Marks
٠	realises there is no need to determine the point of intersection	1
٠	evaluates the areas under the line and parabola over $0 \le x \le 9$	1
٠	deduces the requisite value of a	1

Question 17(a)

CALCULATOR-ASSUMED MARKING KEY

(1 mark)

(3 marks)

(2 marks)

Question 17(b)

Question 17(c)

Solution	
From the formula sheet $E = z_{\alpha} \frac{\sigma}{\sqrt{n}}$ (*)	
Since $z_{0.95} = 1.96$, $E = 0.2$ and $\sigma \approx 1.3$ $\sqrt{n} \approx 1.96 \times \frac{1.3}{0.2} = 12.74$ and so $n \approx 162.3$	
So the sample size needs to be at least 163	
Mathematical behaviours	Marks
 uses the formula (*) 	1
obtains the correct answer	1

Question 17(d)

(2 marks)

Question 17(e)

Solution	
The statement is correct.	
This is because 5.04, the mean number of migraine attacks for untreated people, is	
much greater than 4.74, the upper limit of the upper limit of the 95% confidence interval for	
μ_{acu} , the average number of migraine attacks for people given acupuncture.	
Mathematical behaviours	Marks
accepts the claim	1
 gives a valid reason based on the confidence interval 	1

CACULATOR-ASSUMED MARKING KEY

Question 17(f)

(5 marks)

CALCULATOR-ASSUMED MARKING KEY

Question 18(a)

(4 marks)

Solution	
$v_1(t) = v_0(t) + at = 40i + 20j + (80 - 8t)k$ and $r_1(t) = \int_0^t v_1(u)du = 40ti + 20tj + (80t - 4t^2)k$, (*) because $r_1(0) = 0$ $80t - 4t^2 = 0$ when $t = 0$ or $t = 20$. So rocket A returns to the horizontal plane H when $t = 20$. $r_1(20) = \int_0^t v_1(u)du = 800i + 400j$, and the distance of this point from O is $\sqrt{800^2 + 400^2} \cong 894 m$	
Mathematical behaviours	Marks
• obtains expression for $v_1(t)$ (*)	1
• obtains expression for $r_1(t)$ (*)	1
solves for t	1
obtains the correct answer	1

Question 18(b)

(3 marks)

Solution	
Since v_2 is constant, $r_2(t) = r_2(0) + tv_2 = 600i + vt \cos \theta j + vt \sin \theta k$ (*)	
If the flight paths meet, $r_1(t) = r_2(t')$ for some values of t and t'.	
So $40t = 600$, $t = 15$ and $r_1(15) = 600i + 300j + 300k$ (**)	
If $r_2(t') = 600i + 300j + 300k$, $vt' \cos \theta = 300$ and $vt' \sin \theta = 300$.	
So $\cos \theta = \sin \theta$ and hence $\theta = 45^{\circ}$.	
Mathematical behaviours	Marks
• solves for $r_2(t)$ (*)	1
 locates points where the flight paths meet 	1
• obtains correct answer for θ	1

Question 18(c)

Solution	
From part (b), if the rockets collide $r_2(15) = 600i + 300j + 300k$ (*) Also from (b), $t = 15$, and $\theta = 45^{\circ}$ so that $15v \cos \theta = 300$ implying that $v = 20^{\circ}$ So the speed of rocket B is $28 m s^{-1}$ (approximately) if the rockets collide.	$\sqrt{2} \cong 28.3$
Mathematical behaviours	Marks
• uses $r_2(15) = r_1(15)$ (*)	1
obtains correct answer	1

Question 19

(7 marks)

Solution	
If the cross section of the sphere is given by $x^2 + y^2 = a^2$ then the volume of we by $V = \pi \int_{y=-a}^{y=-a+b} x^2 dy = \pi \int_{-a}^{b-a} (a^2 - y^2) dy = \pi a^2 b - \frac{\pi}{3} \Big[(b-a)^3 + a^3 \Big]$	ater is given
$=\pi a^{2}b - \frac{1}{3}\pi(b^{3} - 3ab^{2} + 3a^{2}b) = \frac{\pi}{3}(3ab^{2} - b^{3})$)
Now the volume of the complete sphere is	
$\frac{4}{3}\pi a^3$	
so the computed volume is a fraction	
$b^{2}(3a-b)$	
$\frac{4a^3}{4a^3}$	
When we put	
b = a	
the fraction reduces to $\frac{1}{2}$ as anticipated as this denotes the sphere is half full.	
When	
b = 2a	
the fraction equals 1 corresponding to a completely full sphere	
Mathematical behaviours	Marks
writes down an appropriate integral	1
with the correct limits	1
 integrates correctly and inserts the limits 	1
simplifies the expression	1
 evaluates the correct fraction of the complete volume 	1
• interprets correctly the case when $b = a$	1
• interprets correctly the case when $b = 2a$	

CALCULATOR-ASSUMED MARKING KEY

Question 20 (a)

(3 marks)

Solution	
$du = -\frac{1}{x}dx$ $\int \frac{1}{x\ln\left(\frac{1000}{x}\right)}dx = -\int \frac{du}{u}$ $= -\ln u + c$ $= -\ln\left \ln\left(\frac{1000}{x}\right)\right + c$	
Mathematical behaviours	Marks
rewrites integral in terms of <i>u</i>	1
determines correct antiderivative	1
• rewrites antiderivative in terms of x	1

Question 20(b)

Solution	
$\frac{d^2P}{dt^2} = r(k-P)\frac{dP}{dt} - rP\frac{dP}{dt}$	
$= r \frac{dP}{dt} (k - 2P)$	
$\frac{d^2P}{dt^2} = 0 \Longrightarrow k - 2P = 0 \Longrightarrow \qquad P = \frac{k}{2}$	
Mathematical behaviours	Marks
• differentiates implicitly to determine $\frac{d^2 P}{dt^2}$	1
• establishes $P = \frac{k}{2}$	1

Question 20 (c)

CACULATOR-ASSUMED MARKING KEY

Solution	
$\frac{d^2P}{dt^2} = -c\frac{dP}{dt} + c\ln\left(\frac{k}{P}\right)\frac{dP}{dt} = c\frac{dP}{dt}\left(\ln\left(\frac{k}{P}\right) - 1\right)$	
$\frac{d^2 P}{dt^2} = 0 \Longrightarrow \qquad \ln\!\left(\frac{k}{P}\right) = 1$	
$\implies \qquad \frac{k}{P} = e$	
$\Rightarrow P = \frac{k}{e}$	
Mathematical behaviours	Marks
• differentiates implicitly to determine $\frac{d^2 P}{dt^2}$	1
• establishes $P = \frac{k}{e}$	1

Question 20 (d)

CALCULATOR-ASSUMED MARKING KEY

(5 marks)

Solution	
$\frac{dP}{dt} = 8 \times 10^{-5} P (1000 - P) \implies P = \frac{10^5}{100 + 900e^{-0.08t}}$ $t = 50 \implies P \approx 858$	
$\frac{dP}{dt} = 0.05 \ln\left(\frac{1000}{P}\right)P \qquad \Rightarrow \qquad \int \frac{dP}{P \ln\left(\frac{1000}{P}\right)} = \int 0.05 dt$	
$\Rightarrow -\ln\left \ln\left(\frac{1000}{P}\right)\right = 0.05t + c$	
$P_0 = 100 \qquad \Rightarrow \qquad c = -\ln \ln 10 $	
$t = 50,$ $-\ln\left \ln\left(\frac{1000}{P}\right)\right = 2.5 - \ln\left \ln 10\right $	
$\Rightarrow P \approx 828$ Constraints in the second se	
The second model predicts a slightly smaller population.	
Mathematical behaviours	Marks
 correct population equation using logistic equation 	
calculates population size	1
correct population equation using second model	1
calculates population size	1
 compares predicted population sizes 	'